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In this paper we develop a new version of the treatment of discon- 
tinuities developed earlier by this author. It is a variant of the x-t 
version in (J. Comput. Phys. 83, 148 (1989)). The new version differs 
from the x-t version in the sense that it tracks discontinuity positions 
instead of the local conservation errors. One of the main considerations 
of this paper is to show the equivalence between the two versions, by 
revealing the link between the discontinuity positions and the local 
conservation errors. In addition, a “stacking treatment” is developed to 
deal with discontinuities that locate in the same grid cell. Numerical 
experiments for applying the new version to a two-step scheme are 
presented, and the results are qualitatively the same as for applying the 
x-t version to one-step schemes. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The partial differential equations considered in this paper 
are the hyperbolic system of conservation laws 

(1.1) 

where U= (ul, u2, . . . . u,)=, and the Jacobian matrix offhas 
m real eigenvalues and a complete set of m linearly inde- 
pendent right-eigenvectors. A weak solution to (1.1) is a 
bounded measurable function u(x, t) satisfying 

Jom jm (urj, +f(u) 4,) dx dt + jv uo(x) 4(x, 0) dx =0 
-m -cc 

(1.2) 

for all smooth test functions. 
This paper continues to discuss the treatment of discon- 

tinuities developed in [7, 81 for finite difference methods for 
(1.1). As is described in [7], the treatment in some respects 
is similar to Harten’s subcell resolution (see [6]). However, 
it is a shock tracking technique, whose main idea is this: in 

* Research was supported by ONR Grant NOOO14-86-k-0691. 

the field of a discontinuity the computation only uses infor- 
mation from the same side of the discontinuity. In the scalar 
case, this is done by doing the following: at the grid points 
on the other side of the discontinuity, we replace the original 
data by the extrapolated data from the previous side for the 
numerical flux. In the system case, Riemann problems 
related to the original and extrapolated data are solved to 
produce the data that replace the original data. By doing 
this, the whole computation still proceeds on the regular 
grid and there are no states on the discontinuities and their 
corresponding computation. The treatment applies to any 
difference schemes, and the corresponding algorithm is 
much simpler than the traditional shock-tracking methods. 

The method that will be developed in this paper is a 
variant of the x - t version in [7]. As described in [7], the 
x - t version of the treatment is not conservative, since in 
some cells different flux terms are used. The differences of 
the numerical flux are accumulated and recorded and com- 
pensate the numerical solution in a certain way. In [7], we 
call the accumulated flux differences artificial terms along 
the t direction; however, in this paper we call them local 
conservation errors, since the present terminology seems to 
be more proper. The grid cells that contain discontinuities 
are called critical cells. The movement of critical cells in the 
x - t version is based on the magnitude of the conservation 
errors; in other words, the x - t version tracks the conserva- 
tion errors. 

The movement of critical cells in the version developed in 
this paper is based on the positions of the discontinuities; in 
other words, this version tracks discontinuity positions 
rather than conservation errors, just as was done in tradi- 
tional front-tracking methods (see [ 1, 5,9, 12)). One of the 
main considerations of this paper is to show the equivalence 
between this version and the x - t version when the solution 
is piecewise smooth, by revealing the link between the 
discontinuity positions and the local conservation errors, 
that is, Proposition 3.2 and Proposition 4.1. 

The author would like to point out that the method 
developed in [Z] has the same basic idea as our treatment. 
For an isolated discontinuity in the one-dimensional case, it 
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also extrapolates the solution from each side of the com- 
putation to evade the discontinuity. However, its extensions 
to the system case are different from ours. Moreover, we 
have developed many treatments for interactions of discon- 
tinuities; this makes our treatment far more effective than 
that in [2]. 

We also point out that the idea of recording local conser- 
vation errors and compensating the numerical solution by 
them also occurred in [4]. Actually, the terminology “local 
conservation error” was first introduced in that paper. 
However, the method there is essentially a shock-capturing 
method and there is no discussion concerning the link 
between the conservation errors and the discontinuity 
positions. 

The paper is organized in the following way: Section 2 
describes the treatment of isolated discontinuities. Section 3 
shows the equivalence between the present version and the 
x - t version, i.e., the conservation feature of the treatment. 
Section 4 describes the treatment of discontinuity interac- 
tions and also shows its conservation feature. A so-called 
“stacking treatment” is developed in this section, Section 5 
extends the treatment to Euler equations of gas dynamics. 
Section 6 presents the numerical results obtained by 
applying the treatment to a two-step scheme. 

2. TREATMENT OF ISOLATED DISCONTINUITIES 

Since the version that will be developed in this paper is 
similar to the x - t version in [ 71, we only describe it briefly 
and emphasize the differences between the two versions. 
As usual, the discussion starts with the simplest case, i.e., 
the one-dimensional scalar problem; the corresponding 
equation is 

~t+f(~),=O, (2.1) 

where both u and f are scalar. The underlying difference 
scheme is a general conservative scheme, 

ui” + I = u; - A@;+ 1,2 -f;- l/Z), (2.2) 

where u,; denotes the numerical solution at the grid point 
Cxj9 t”), 

“f;+ l/2 =J(u;-k+I, . . . . uJn+d (2.3) 

is the numerical flux depending on 2k variables; ;1= z/h is 
the mesh ratio, where r and h are the time and space 
increments, respectively. The numerical flux is consistent 
with the flux in (2.1) in the sense that 

f(u, u, . ..) u) =f(u). (2.4) 

The cells that contain discontinuities are called critical 
cells, on which the treatment is applied. (We change the 
terminology for these cells, considering that the present one 
is more proper than the old one used in [7], which is 
generated interval ). 

In general, the treatment is performed in the following 
four steps for an isolated discontinuity: 

(1) Extrapolate the numerical solution from each side 
of the critical cell to the other side, and obtain a set of 
extrapolated data: 

where [x,,, xj, + 1] is the critical cell, and the data with “-” 
are from the left to the right and the data with “+” are from 
the right to the left (as shown in Fig. 2.1). 

(2) Compute zP+‘, the numerical solution on the 
following level: When xj is on the left side of the critical cell, 
i.e., j< jI, we compute u,“” by the flux with “-“; or, 

u,” + l = ui” - A(&,, - f;,,,,, (2.6) 

where 

When xj is on the right side of the critical cell, i.e., j > j, + 1, 
we compute u,” + ’ by the flux with “+,” defined as 

~~~,,‘,,,=f(~~l_+k+~ ,..., u;,‘+,u;+~ ,..., u;+,J (2.8) 

U 

” 

q-2 
u;,., “11 

--i 

t.-- 

n.+ n.+ 
U,l+l U,l+Z 
o---o 

h\” 

*X 
‘~1 t” ‘jl+l 

FIG. 2.1. The numerical solution on the level n has a jump in the cell 
[xi,, xj, + 1]; circles denote the original data of the numerical solution and 
“*“s denote the extrapolated data from the two sides of the jump. 
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(3) Compute t”+l, the discontinuity position on the 
following level. First, we extrapolate U” from each side to 5” 
and obtain two extrapolated data u:,,, u;,. Then, we 
compute the speed of the discontinuity by the Hugoniot 
condition 

s = f($.) -f(&) 
u+l:, . (2.9) 

Finally, we compute gn + ’ by 

5 ??+’ = y+sc (2.10) 

(4) Set up the critical cell on the following level. If t”+ ’ 
remains in [Ix,, , xI, + r], th e same cell will be the critical cell 
on the new level; otherwise, 5”” should move into one of 
the adjacent cells, in which case this adjacent cell to 
becomes the critical dell, and the numerical solution at the 
grid point crossed over by the discontinuity should be 
updated either by the datum computed from the side the 
point now belongs to or by the extrapolated datum also 
from this side. 

We make the following remarks: 

(a) The propagation of the discontinuity in this version 
is different from that in the x - t version; how the discon- 
tinuity is moved depends on its position. 

(b) In step (3), the discontinuity position is computed 
only with first-order accuracy. Higher order accuracy can be 
obtained either by using information on the new level to 
compute s in (2.9) or by a Runge-Kutta procedure. The 
algorithm we used to compute the numerical examples 
in Section 6 is based on a second-order RungeeKutta 
procedure, which will be described later. 

(c) The speed of the discontinuity computed in (2.9) 
satisfies 

Is1 6 max If’(u)l. 
q” = (c-xi, + l/2)($ + ] - u,:, 

JI h 
+ O(J); (3.6) 

where 

(3.2) 

The q”‘s are the local conservation errors, and they balance 
the different numerical flux terms used in some cells. As 
described in [7], p” and q” are nonzero only in the vicinity 
of critical cells. For an isolated discontinuity, if the numeri- 
cal solution at the grid point crossed over by the discon- 
tinuity is updated by the datum computed from the same 
side of the critical cell, then the nonzero p’s and q’s are as 
follows: If tn+ ’ remains in the original critical cell, 

qTl+l =q:,+d(~~~=,,2-~~~r,!z): (3.3) 

if < n+l moves to the left adjacent cell, 

and, if t” + ’ moves to the right adjacent cell, 

where [x,, , xI, + I ] is the crit. tea cell. If the numerical solu- 1 
tion is updated by the extrapolated data from the same side, 
(3.3)-(3.5) are accurate up to O(K), where r is the accuracy 
order of the underlying scheme and the treatment. We 
recommend readers see [7] for the derivation of (3.3)-(3.5). 

PROPOSITION 3.1. Assume that the solution to (1.1) is 
piecewise smooth. Then for an isolated discontinuity, if both 
the underlying scheme (2.2) and the treatment are of the.first 
order, 

Thus, the discontinuity may only move to the left or right 
adjacent cell, if the mesh ratio A satisfies the CFL-condition; if both the underlying scheme and the treatment are of the 

it will not move far away from the original cell. second order, ken 

3. CONSERVATION FEATURE OF THE TREATMENT 
OF ISOLATED DISCONTINUITIES 

4,: = 

C"y, - UT; + )txj, + 1 - 5"J2 

+(U:,+1-UJn;;l)(~n-Xj,)2 > 

2h2 + O(h), (3.7) 

In order to discuss the conservation feature, we write the 
overall algorithm in a conservation-like form, 

e critical cell on the level n, and 

ui”’ l = u,” - nQ;+ 1,2 -y;- ,,2) 

+ P,“, I,2 - P:- l/2 + 4: + ’ - s;> 

Here we call the treatment of the rth order if both 
the extrapolation and the algorithm to compute the 

(3.1) discontinuity positions are of rth order. 

58l/iO3/2-I2 
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The proposition indicates that if the numerical solution is 
uniformly bounded, p and q are also uniformly bounded. 
Since the principal feature of the x - t version is that q stays 
uniformly bounded (see [7]), this shows the equivalence 
between this version and the x - t version when the solution 
to (1.1) is piecewise smooth. Also, we have from (3.1) 

c u,“h = 1 uph + O(h), (3.8) 
i i 

which implies that the numerical solution is almost 
conserved. By the same argument in [7] we can obtain the 
convergence of the method under certain conditions. This is 
why we call the proposition the conservation feature of the 
treatment. 

A geometric interpretation for (3.6) is as follows: The 
common interpretation of the numerical solution of a con- 
servative scheme is that it is a piecewise constant function 
with each constant u,” covering an interval [xj- i,*, xj+ ,,2]. 
If we consider that at the two endpoints of the critical cell 
the constants ~1 and u;+ i cover the intervals [x,, _ I,z, (“1 
and [ 4”, xj, + X,z] q, respectively, by taking the discontinuity 
into account, (3.6) indicates that qih is equal to the dif- 
ference resulting from the different interpretations of the 
solution up to O(h), as shown in Fig. 3.1. Equation (3.7) 
also can be interpreted in this way if we see the numerical 
solution as a continuous piecewise linear function and take 
the discontinuity into account. 

When both the underlying scheme and the treatment are 

n-a 
“j1+3 

1 ” 
:u 

u;,+2-9- 

, Jl+& 

+- 

‘jl E” ‘jl+l 
)X 

u”(x) 

FIG. 3.1. Piecewise constant function U(x) defined by (3.10) and 
(3.11). 

of second order, (3.7) differs from (3.6) only by O(h), and 
this can be shown by writing (3.7) as 

4~=~(i;..-x,,+,,*)(U;ltI-U~,) 

+~i(uz+I-u;;+)(x,,+I-II”)2 

+(U;,-U~;;1)(~“-X,:)2}+O(h). 

Proof of (3.6). Denote 

Sn=(yn-xj,+,j2)(uy,+,-u:,)-hq,:, 

and we will prove 

S n+‘-&y=o(h2), 

(3.9) 

(3.10) 

(3.11) 

from which the conclusion of the proposition follows easily. 
The proof should be completed for all three cases: t”+’ 
either remains in the original critical cell or moves into one 
of its adjacent cells. We will only present the proof for the 
first case, since the proof for the other two cases is similar. 

By (3.3), we have 

(3.12) 

where d~(“+~-(“, 4”+1/2=&(<“+1+(f”), and $+I/*= 
4 ($’ ’ + ~7). The right side of (3.12) is an approximation 
to the left side of the Hugoniot condition 

dx - dt[f]/[u] = 0 (3.13) 

at the point (5” + i12, t”+ ‘I2 ). Since both the underlying 
scheme and the treatment are of the first order, the accuracy 
of both the numerical solution U” and the discontinuity 
position r” are of the first order. Thus, (3.11) follows. This 
completes the proof. 

Proof of (3.7). Essentially, (3.7) can be proved in the 
same way as (3.6); however, it is more complicated, since we 
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need to show the second-order accuracy. (3.7) can be where u;,;~:‘;+ = +(U;,;$; + q:,,,), q;;:“;-- = 
written as 4 (q,?‘,; + UT;; 1,2), and d and 5 n+ ‘I2 are defined as before. 

Since the underlying scheme and the treatment are of the 
(~:;~l,2-~J:.~l,2)(5n--j,+1,2)-q~~ second order, 

’ ( Zl -- 24 
4h -u:,){(xj,+*-5”)*-(5”-xj,)*} $,:‘I- =u;;+, -i(f&-f;;,,,2)+O(h3) (3.17) 

+A ($,I - u,:’ + I{ (Xi, + I - 5”)’ + (5” - xJ2} and 

= O(h’), (3.14) uJ,+‘,+ =u;,‘+ -A(f;;~,,,-~~;‘,,,)+O(h3). (3.18) 

where ~i:.:i/~ = 4 (UT, + u;;;,) and u;;;,,, = 4 (q; + + U,: + i). 
Denote by Qfl the last two terms on the left in (3.14); we 

Therefore, 

have 
n+l.- 

‘ji + l/2 - $; T  l/2 = -; (f;;~3,2-f~,‘Il,2) + O(h3) (3.19) 

and 

( txji + l/2 - ty +g. (3.15) 
n+l,+ 

‘jI + l/2 
“, + 

- ‘jl t 112 = -; (f&2 -j7;tl12) + O(h3). (3.20) 

Denote by s” the left side of (3.14). At this time we will show 
that (3.11) is accurate up to O(h3) (rather than O(h*)). Also 
we only present the proof for the case where t” + ’ remains Moreover, we have 

in the original critical cell. In this case we have 

S n+1-Sn=d(u;$,:2;+ -u;,;‘,:‘;-) 
Cxj, + l/2 

-~“+1)2~~+d(~““/‘-xj,+l,2) 

+(t n+ l/2 
- X,, + 112 1 

x cu;::i: - u;, ; “,; -q:1,2+ u,:‘;,,,) 

- h(q;,+’ -q;)+(Qn+‘-Q’?, (3.16) and 

Therefore, 

U”+ l/2.- “i l/2 

Q 
_ ~1 f 1 he uj, 

where 

u”(x> 

FIG. 3.2. Piecewise linear function U(x) defined by (3.12) and (3.13). 

+ (5 
n+ l/2 

- xjf + l/2 J2 (3.21) 

txj, + 112 - ~n)2=~-d(~n+1~2-~~,+~,~) 

+(5 n+ l/2 
- xjl + l/2 )‘. (3.22) 

x (5 “+ l/2 
- X,, + 1,2 I+ R” + lf2, (3.23) 

-?.+lp)?). (3.24) 
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Obviously, R n+“2 = O(h3). Substitute (3.17)-(3.24) into 
(3.16); we have 

n+ l/2 

s “+I-S”=d $+$,5+ +‘,I+’ - s+ ‘12, + 

h 

x (4 IIf 112 
-xjl+1/2 1 

--z &,,2+ 
i 

f;;:3/2 -&2 

2h 

x (5 
n+ 112 

-xi, + I/2 1 

-f,,p &3,2 - f,:‘-l/2 

II + 112 2h 

x cc 
n+ l/2 

-x,, + 12)) + W3). (3.25) 

The right side of (3.25) is again an approximation to the 
left side of the Hugoniot condition (3.13) at the point 

(5 
n + I/2 p + l/2). s ince both the underlying scheme and the 

treatment are of second order, the accuracy for both the 
numerical solution and the discontinuity position is second 
order. With f;+ ,,2 = f 1 x = r,+,!2, I= ,“+Iv + O(h’), the conclu- 
sion follows. 

4. TREATMENT OF INTERACTIONS 
OF DISCONTINUITIES 

When two critical cells are close to each other, they are 
treated in the same way as in [7]; hence, our considerations 
focus only on the case when they have moved to the same 
cell and when they merge. A so-called “stacking treatment” 
will be developed (Fig. 4.1). 

In the x - t version we merge the two critical cells that 
have moved to the same cell and add the two local conserva- 
tion errors together to give the local conservation error for 
the newly-formed discontinuity. However, the two discon- 
tinuity positions usually have not crossed over each other at 
the moment when we merge the critical cells; that is, the 
merging has taken place a little too early. 

In this paper we will stack the critical cells in the same 
cell, but with a middle state between them when their dis- 
continuity positions have not crossed over each other. The 
middle state can always be obtained in a natural way, for 
example, in the cases (a) and (b) in Fig. 4.2. The non- 
updated numerical solution at the grid point (xjz, t” + ’ ) 
before the step 4 can be chosen as the middle state for the 

U 

Ul”l 

1.., 

u;*+, 

n,+ II; 
u,l-l U”.+ 

n: u J2+2 
J1 

U” 
J1+1 

(2 
U,2+1 

0... .a 

-o-------o-- 

l ‘W x 
x,1 x,1+1 X 

12 - ‘jq+l 

FIG. 4.1. Two critical cells on level n separate the numerical solution 
into three smooth parts; circles denote the original data of the numerical 
solution and “*“s denote the extrapolated from the three parts. 

two stacked critical cells on level n + 1. The algorithm we 
used to compute the numerical examples in Section 6 does 
not let case (c) happen by the handling described in [7], 
which holds one of the critical cells. The middle state stands 
as the right state for the left critical cell and the left state 
stands for the right critical cell. 

This stacking treatment can stack more than two critical 
cells in the same cell with several middle states. In doing so, 
we actually store more information than usual in the cell. 
Such a treatment is efficient in dealing with the small region 
structure if we do not care too much about the structure 
details but only the discontinuity positions. 

FIG. 4.2. (a) Critical cell denoted by upward brace moves one cell to 
the. left and critical cell denoted by downward brace remains in the same 
cell. (b) Critical cell denoted by upward brace remains in the same cell and 
critical cell denoted by downward brace moves one cell to the right. 
(c) Two critical cells move across each other. 
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The two stacked critical cells coexist until the two discon- 
tinuity positions cross over each other; then we merge them 
to form a new critical cell. In the present version the discon- 
tinuity position for the new-formed one is computed as 

where Lx,, , xl, + 1 ] is the critical cell, 4, and t2 are the two 
discontinuity positions before the merging, and U* is the 
middle state in between. 

PROPOSITION 4.1. If the solution to (1.1) is piecewise 
smooth, (4.1) has second-order accuracy. 

ProoJ First we prove that (4.1) is exact when the solu- 

DISCONTINUITIES 

from (4.3); thus, by (4.2), 

365 

which indicates that (4.1) is exact. 
If the numerical solution is piecewise smooth, (4.3) is 

correct up to O(h); therefore, (4.2) is correct up to O(h*). 
Thus the conclusion follows. 

We add the two local conservation errors together and 
take the sum to be the local conservation error for the new 
critical cell. 

PROPOSITION 4.2. Zf the solution to (1.1) is piecewise 
smooth, then (3.6) and (3.7) are still true for the new critical 
cell under the conditions of Proposition 3.1. 

tion is piecewise constant. In this case, the discontinuities 
starting from (Y-1 and t”,-’ on the level n - 1 are both Proposition 4.2 is the extension of Proposition 3.1 to the 

straight lines with speeds s, and s2, respectively. They meet interaction case. It shows the conservation feature of this 

at a point (l*, t*) and then merge to form a new discon- merging treatment and the equivalence between it and that 

tinuity, with speed sO, which reaches the level n at t” (as of the x - t version. 

shown in Fig. 4.3). Obviously, Proof. When both the underlying scheme and the treat- 

y=[*+(t”- t*)s,, (4.2a) ment are of the first order, we have from Proposition 3.1 

where 

(4.2b) 

(4.2~) 

(4.3a) 

(4.3b) 

(4.3c) 

u/, ur, and U* are the left, right, and middle states of the 
numerical solution, respectively. It is easy to obtain 

s” = (u* - 4 SI + (u, - u*) s* 
ur--1 

(4.4) 

tn-l 

FIG. 4.3. Two discontinuities start from 5T-I and t;- ‘, meet at point 
([*, t*), and form a new discontinuity. 

4:,,1 = 

(57-xj,+I/2)(u* -"y,) 

h +0(l) (4.6) 

and 

cl;.* = 

Cl; - xji + 1/2)t”~, + 1 - u*) 

h +0(l), (4.7) 

where, qi:,l and $‘,,* are the local conservation errors of the 
two stacked critical cells. Equation (3.6) is obtained for the 
newly-formed critical cell by adding (4.6) and (4.7) together 
and using (4.1). 

When both the underlying scheme and the treatment are 
of the second order, by (3.9), (3.7) differs from (3.6) only by 
O(h); hence (3.7) follows easily. 

5. EXTENSION OF THE TREATMENT TO EULER 
EQUATIONS OF GAS DYNAMICS 

The Euler equations of gas dynamics for a polytropic gas 
are 

u, +f(uL = 07 (5.la) 

u=(p,m,E)T, (5lb) 

f(u) = P + (0, P> 4PlT, (5.lc) 

P= (Y- l)(E-; P4*)> (5.ld) 

where p, q, p, and E are the density, velocity, pressure, and 
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total energy, respectively, m = pq is the momentum, and y is 
the ratio of specific heats. The eigenvalues of the Jacobian 
matrix A(u) = af/au are 

al(u) = 4 - 4 Q(U) = q, adu) = q + 4 (5.2) 

where c = (yp/p)‘/’ is the sound speed. 
As in [7], there are three types of critical cells, the left 

shock critical cells (LSCC), right shock critical cells 
(RSCC), and contact discontinuity critical cells (CDCC), 
corresponding to the left shocks, right shocks, and contact 
discontinuities, respectively. For a single discontinuity, the 
treatment is still carried out in the four steps outlined above, 
i.e., (1) compute the data that will replace the data on the 
other side of the discontinuity for the numerical flux; 
(2) compute the numerical solution on each side of the 
discontinuity; (3) compute the new position of the discon- 
tinuity; (4) set up the critical cell on the new level and 
update the numerical solution at the grid point crossed over 
by the discontinuity (if there is such a grid point). 

As was done in [7], the data in step (1) are computed by 
solving Riemann problems related to the original and the 
extrapolated data and picking the proper states in the 
Riemann separations. In doing so, the treatment acts only 
on the corresponding field of the discontinuity. 

The speed in step (3) is also computed by solving a 
Riemann problem related to the extrapolated data at the 
discontinuity position. The treatment can also be analyzed 
in terms of p” and q” as was done in Section 3 to show the 
conservative feature; the conclusion of Proposition 3.1 is 
still true, only p” and q” are vectors and all the expressions 
in the proof should be understood in vector forms. 

Most of the treatment of discontinuity interactions in the 
scalar case can be formally transformed to the system case. 
The only complication is that there are three waves resulting 
from the collision of two discontinuities. Assume that the 
two critical cells with discontinuity positions 5; and 5; 
collide in the cell [x,, , x,~, + , ] at level n, we treat the collision 
as follows: 

( 1) Solve the Riemann problem RP($, U; + i) and 
obtain two middle states u’, and u;. The wave that connects 
u;, and U: or U; and u;, + i can be either a shock or rarefac- 
tion wave; nevertheless, the wave that connects ai and U> is 
always a contact discontinuity. 

(2) Denote by Q’ the quantity (u, - ~4;) ty+ 
(u,:+,- u*) 5;. Represent Q” as a linear combination of the 
vectors 2.4: - uy,,u;-u:,,andui:+,-u;;thatis, 

Q~=t;?(u:,-ur,)+~;(u:,-u:)+~;(ui:+,-u:) (5.3) 

The representation is unique if the three vectors are linearly 
independent. 

t 
I contact 

left shock 

discontinuity 
I’ 

right 
rarefaction 
wave 

FIG. 5.1. Diagram for the Riemann problem with u and v as its left and 
right states. 

(3) Set a CDCC in the cell [xi,, xj, + ,] with [; as its dis- 
continuity position. When the wave between u; and ui is a 
shock, set an LSCC in the same cell with fy as its discon- 
tinuity position, which with the CDCC set before are 
stacked in [x,, , xj, + , ] with u: as their hidden middle state. 
When the connecting wave is a rarefaction wave, no critical 
cell is set; meanwhile ~7, should be updated by u:, - 
&u’, - ~7,). The wave between U; and UT,+ 1 is treated 
similarly. 

If a resulting k-wave is a discontinuity, the conclusion of 
Proposition 4.1 with respect to this wave is still true, only t” 
should be replaced by {;, the discontinuity position 
of the k-wave, and (4.3a) should be understood as the 
k-component of the linear representation. 

Also, when a resulting wave is a discontinuity, the conclu- 
sion of Proposition 4.2 is still true with respect to it. When 
a resulting wave is a rarefaction, the conservation error 
allocated to it should be transferred back to the numerical 
solution for the sake of conservation, since there is no 
critical cell set for it. This is why we update the numerical 
solution at the endpoint of the critical cell. A geometric 
interpretation of this is as follows; Since the collision 
happens at a certain moment between the two time levels, 
the updated U; represents the position of the rarefaction 
and how much the rarefaction has been spanned since the 
collision. 

6. NUMERICAL EXAMPLES 

We use the version of the treatment developed in this 
paper to recompute Example 2, and Example 4 in [7], and 
find that the results are qualitatively same. 

The underlying scheme used for the numerical 
experiments in this section is a second-order TVD scheme 
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described in [lo] with a Runge-Kutta-type time discretiza- 
tion. The second-order Runge-Kutta method is two-step 
and can be written as 

24,” + 1’2 = 24; - n(jy+ 1,2 -f;- ,,2), (6.la) 

,;+LU/"+1/2-qfj+,,2 "n+w-jw;), 

.y+‘=+;+,;+l, 
(6.lb) 

with a numerical flux f satisfying 

; tir+ l/2 -~,r-,,2)=f,l.=.~,+o(h2), (6.2) 

where (6.1 a) is the predictor step and (6.1 b) is the corrector 
step. Since the underlying scheme is two-step, there is some 
complication in incorporating the treatment into it. The 
following remarks address how we deal with the complica- 
tion: 

-1.0 / 

i 

t ” 

(1) The treatment should be performed in each of the 
predictor and corrector steps; however, only the predictor 
step may move critical cells to their adjacent cells according 
to their discontinuity positions. The corrector step does not 
move critical cells, even though the final discontinuity 
positions might be a little bit out of the critical cells; 

(2) for a critical cell, the corrector step gives a discon- 
tinuity position p + ‘. The final discontinuity position on the 
new level is 

-1.0 -0.5 0.0 0.5 1.0 

h=1./30., t=2. 1120 steps1 

FIG. 6.1. Linear scalar equation with highly discontinuous initial 
data, 60 grid points. 

and 

uo(x + 2) = 240(x). (6.4~) 

The mesh ratio A is 0.5, and a TVB modification developed 
by Shu in [ 111 is made to the underlying scheme to improve 

5 n+l=d(y+p+l); (6.3) I  ” ” /  “ .  I  “ .  ‘, 

(3) when a critical cell moves to its adjacent cell in the 
predictor step, u,” at the grid point crossed over by the dis- 
continuity in the second formula in (6.lb) is replaced by the 
corresponding extrapolated value in the scalar case or the 
corresponding middle state in the system case. For example, 
when a critical cell [x,, , x,, + I ] moves to its left adjacent cell 
[x,,- ,, x,,], uJI in the second formula in (6.lb) is replaced 
by uJ’; + in the scalar case or UT;!, in the system case. 

EXAMPLE 1. This example is the recomputing of 
Example 2 in [7], where 

24, + 24, = 0, (6.4a) 

(-xsin(inx’), -l<x< -k 

uo(x + 0.5) = (6.4b) 

1.0 

0.5 

0.0 

-0.5 t 

1.0 

0.5 

0.0 

-0.5 

-1.0 B 0 

-1.0 -0.5 0.0 
I 

0.5 I.0 

h=1./60., t=8. (960 steps) 

FIG. 6.2. Linear scalar equation with highly discontinuous initial 
data, 120 grid points 
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5.0 

4.0 

3.0 

2.0 

1.0 

0.0 ' I 
0.0 0.2 0.4 0.6 0.6 1.0 

DENSITY TIME = 0.026 

FIG. 6.3. Euler equations, blast wave problem, t = 0.026. 

the computation near extremum points. Figure 6.1 presents 
the numerical result with h = $ (60 grid points) at t = 2. 
Figure 6.2 presents the numerical result with h = & (120 
grid points) at t= 8. We compare the results with those 
without treatment, which are not presented here. 
Figures 6.1 and 6.2 show quite an improvement in discon- 
tinuity transition and overall resolution. 

EXAMPLE 2. This example is the recomputing of 
Example 4 in [7], which is for a Euler system with the 
initial values 

Odx<O.l, 

0.1 <x<o.9, (6.5) 
0.9dx< 1: 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 

f b 

3 0.2 0.4 0.6 0.6 1.C 
J 

DENSITY TIME = 0.036 

FIG. 6.4. Euler equations, blast wave problem, t = 0.038. 

and solid wall boundary conditions, where 

P/=Pm=Pr= 1, 

41=4m=qr=o, (6.6) 

p, = 103, pm = lo-*, pr = 102; 

1 is still 0.5. The numerical results for density at t = 0.026 
and t = 0.038 are presented in Fig. 6.3 and Fig. 6.4, respec- 
tively, with the solid lines representing the numerical solu- 
tion obtained by an EN0 scheme with 800 grid points, 
considered as the exact solution here. At around t = 0.032, 
a very strong rarefaction wave is generated from the interac- 
tion of a shock and a contact discontinuity. The underlying 
scheme based on Roe’s approximate Riemann solver cannot 
span the rarefaction; therefore, the viscosity term 

with a coefficient of 0.2 is added to the underlying scheme to 
obtain a physical solution. 

7. CONCLUSIONS 

We have developed a new version of the treatment of dis- 
continuities, which is a variant of the x - t version in [7]. 
The difference between the two versions is that they track 
different objects. The x - t version tracks the local conserva- 
tion errors, while the present one tracks the discontinuity 
positions. We have shown the equivalence between the two- 
version piecewise smooth solutions. We have also developed 
a stacking treatment for interaction of the discontinuities. 
Numerical experiments show that our treatment can be 
efficiently used in a two-step scheme. 
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